0=36x^2-478-2463

Simple and best practice solution for 0=36x^2-478-2463 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=36x^2-478-2463 equation:



0=36x^2-478-2463
We move all terms to the left:
0-(36x^2-478-2463)=0
We add all the numbers together, and all the variables
-(36x^2-478-2463)=0
We get rid of parentheses
-36x^2+478+2463=0
We add all the numbers together, and all the variables
-36x^2+2941=0
a = -36; b = 0; c = +2941;
Δ = b2-4ac
Δ = 02-4·(-36)·2941
Δ = 423504
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{423504}=\sqrt{144*2941}=\sqrt{144}*\sqrt{2941}=12\sqrt{2941}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12\sqrt{2941}}{2*-36}=\frac{0-12\sqrt{2941}}{-72} =-\frac{12\sqrt{2941}}{-72} =-\frac{\sqrt{2941}}{-6} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12\sqrt{2941}}{2*-36}=\frac{0+12\sqrt{2941}}{-72} =\frac{12\sqrt{2941}}{-72} =\frac{\sqrt{2941}}{-6} $

See similar equations:

| 2x2-x=2x-1 | | 0=45x^2-492x-2466 | | 1÷x-5=0 | | F(x)=π/x | | x2+3=x3-1 | | 10x-2=148 | | 5×+y=10 | | 20-3n=85 | | 6s=-60 | | 9u-6+7u=16 | | -71=36=4u-29 | | X+2x+(2+x)=26 | | 2t−2=6 | | (2x+3)+(x-3)=90 | | 4q+5=-11 | | -4(u+5)=6u | | -1/(x^2)=(1/9-1/3)/6 | | 4x+12=40x=7 | | 32x+x^2=504 | | z-16=72 | | 0=x^2-12x-24 | | 4x+8=2x+72x-20 | | 9-x^2=17 | | -b-2=10 | | X^2+7x=5x | | (x+10)(x+14)=(x14)( | | 4(4x+2)=8(2x+1) | | 6x^2-24x-74=0 | | -2(2x+2)=-4x*4 | | x(x+11}=180 | | 6m=10+9m | | 11.3x=12.8=7.5x+35.6 |

Equations solver categories